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Abstract
We study the relationship between one-dimensional fermion gas-impurity
models and quantum dissipative systems, via the method of constructive
bosonization and unitary transformation. Starting from an anisotropic Coqblin–
Schrieffer model, a new, exactly solvable, three-level quantum dissipative
system is derived as a generalization of the standard spin- 1

2 spin-boson model.
The new system has two environmental oscillator baths with ohmic coupling,
and admits arbitrary detuning between the three levels. All tunnelling matrix
elements are equal, up to one complex phase which is itself a function of
the longitudinal and transverse couplings in the integrable limit. Our work
underlines the importance of re-examining the detailed structure of fermion-
gas impurity models and spin chains, in the light of connections to models for
quantum dissipative systems.

PACS numbers: 71.10.Ca, 72.15.Qm, 75.10.Pq, 03.65.Yz

1. Introduction

The understanding of how quantum systems behave in complex environments continues to
be an important fundamental problem, with applications ranging from quantum computation
and quantum information to nanodevices and biological systems at the molecular level. Many
insights into the system dynamics, thermodynamics, critical behaviour and entanglement
properties can be gained by investigating simplified models of such quantum dissipative
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systems (QDS) [1–4] with analytical techniques. A poignant example is provided by the well-
known equivalence between the spin- 1

2 anisotropic Kondo model (AKM) [2, 5] and a particular
case of the so-called spin-boson model [6]—or two-level quantum dissipative system [2, 6]. In
this paper we propose a new model, providing an extension of this correspondence to a three-
level QDS, also derivable via the method of constructive bosonization [7, 8] and mapping from
an exactly solvable, one-dimensional fermion gas-impurity system. The extension is achieved
by bosonization of a fermion gas model with three-component fermions, starting with an
anisotropic form of a Coqblin–Schrieffer model [9]. We demonstrate the exact solvability of
this model, in the context of the standard analysis via coordinate wavefunctions, by verifying
that the scattering data can be parametrized by an R-matrix of standard trigonometric type. As
a three-level QDS, the model admits arbitrary detuning between the three energy levels, but the
bath couplings take on special values in the integrable limit. Moreover, all tunnelling matrix
elements are equal, up to one complex phase which is itself a function of the longitudinal and
transverse couplings in the integrable limit. In section 2 we propose the new Hamiltonian, and
outline the method of bosonization and mapping in subsections 2.1 and 2.2, leading to a new
three-level dissipative system model whose features we discuss. In section 2.3 we show that
the model is exactly solvable, and the final section 3 includes some comments on potential
applications, and indicates directions for further work as concluding remarks. Remarks on
notational details and some technical derivations are given in the appendix.

2. Three-level quantum dissipative system

We extend the well-known [2, 6] equivalence between the standard (XXZ-type), spin- 1
2 AKM

model, and a particular case of the spin- 1
2 spin-boson model—the simplest possible two-level

QDS [6]. In order to motivate and present the extension, we first briefly introduce these two
models and their parameters. In second-quantized form, the AKM Hamiltonian is

HAKM =
∑

p

h̄vF p
(
:c†p↑cp↑ + c

†
p↓cp↓:

)
+ J‖

∑
p,p′

(
:c†p↑cp′↑ − c

†
p↓cp′↓:

)
Sz

+
1

2
J⊥

∑
p,p′

(
c
†
p↓cp′↑S+ + c

†
p↑cp′↓S−

)
≡

∑
p,α

h̄vF p:c†pαcpα: + J‖
∑

p,α,p′,α′
:c†pα(σz)αα′cp′α′ :Sz

+
1

2
J⊥

∑
p,α,p′,α′

(
c†pα(σ−)αα′cp′α′S+ + c†pα(σ+)αα′cp′α′S−

)
. (1)

Here, c
†
pα , cpα are respectively the creation and annihilation operators for spin- 1

2 electrons
with wavenumber p, and energy h̄vF p linearized about the Fermi level (p = 2πnp/L, np ∈ Z,
for system length L and periodic boundary conditions), while α, β = 1, 2 or ↑,↓ are the spin
orientations. The second form of (1) is given to facilitate comparisons with the three-level
extension of the model, where Gell–Mann matrices will take the role of the Pauli matrices. The
symbol : · · · : stands for operator normal ordering relative to the Fermi sea, the vacuum state |0〉
annihilated by both cp (p > 0) and c

†
p (p � 0). The electrons interact with a localized magnetic

impurity atom (taken to be at the origin in coordinate space) via (anisotropic) coupling between
the spin density at the origin with the impurity spin. For clarity its spin operators are written
as Sz, S± ≡ Sx ± iSy rather than as Pauli matrices 1

2σ. Finally, to (1) can be added an external
magnetic interaction of the form hSz, h := μμBB for impurity magnetic moment μ.
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The spin- 1
2 spin-boson, or two-level QDS, Hamiltonian is [6]

HSB = 1

2
εσz − 1

2
h̄�σx +

∑
i

h̄ωib
†
i bi + σz

∑
i

h̄Ci

(
bi + b

†
i

)
. (2)

In (2), the two-level system has detuning (level- or well-asymmetry) parameter ε, and the
tunnelling amplitude � between the two levels or wells. The index i labels a set of harmonic
oscillators playing the role of the environment or ‘bath’, with energies determined by the
associated frequencies ωi (the zero-point contributions 1

2h̄ωi have been removed by an
appropriate shift). The bath interactions with the two-level system, with strengths given
by the coupling constants Ci, affect the energy in the upper and lower levels (which are
eigenstates of σz). The overall influence of the oscillators on the reduced system is described
by the spectral density J (ω) := ∑

i C
2
i δ(ω − ωi) [10]. For the cases of interest, it has the

so-called ohmic form, J (ω) ∝ ω e−(ω/ωc), where ωc is the cutoff frequency. An important
implicit parameter which is critical to the behaviour of the QDS is the ohmic coupling α, the
proportionality constant which determines the strength of this relationship between J (ω) and
ω (which is of course linear, for ω � ωc).

It is well known that the AKM model (1), which is also closely related to the XXZ

Heisenberg spin chain, is exactly solvable [11, 12], and so this in-principle complete analytical
access to all details of the spectrum, eigenstates and correlation functions is conferred, through
the transcription via bosonization and an associated unitary transformation, on the spin-boson
model itself. In this paper we expand on the dictionary of such exactly solvable fermion gas
systems, which may be brought into QDS form, presenting a new, three-level QDS. Starting
with an appropriate 1D fermion gas model, we reiterate the steps of the standard recipe for the
bosonization mapping and unitary transformation which established the equivalence between
(1) and (2). Finally, we verify using the standard coordinate space approach that the starting
model is indeed in the exactly solvable class, thus underlining the utility of the new three level
QDS model.

The starting point is an equivalent of the spin- 1
2 AKM, but for three-component fermions

rather than spin- 1
2 . In magnetic systems, multicomponent fermions find applications in the

Coqblin–Schrieffer (C–S) model [9]; for the transcription to a three-level QDS, we shall require
in the fermionic picture, an extended parametrization of the interaction between the local and
impurity ‘spins’ with additional terms of ‘anisotropic’ type: an ‘AC–S’ model. The full
Hamiltonian thus contains the free-fermion kinetic term, external magnetic field interactions
and the analogue of both transverse and longitudinal interaction terms between the localized
fermion ‘spin’ operators at the origin, and those of the impurity atom:

HF
ACS =

3∑
p,α=1

h̄vF p : c†pαcpα: +
∑

α

hαSαα

+
∑

p,p′,α

J‖ : c†pαcp′α : Sαα + J⊥
∑

p,p′,α<β

(
eiζαβ c

†
pβcp′αSαβ + h.c.

)
. (3)

Here p is the fermion wavenumber as before; α, β = 1, 2, 3 label the three independent
components. The magnetic impurity operators Sαβ are generators of the SU(3) Lie algebra for
α, β = 1, 2, 3, provided S11 + S22 + S33 = 0; more generally it will be convenient to drop this
condition and regard the nine independent operators Sαβ as generators of U(3). In the course
of the bosonization transcription of the model, it will turn out that the complex phases ζαβ ,
included for generality in the first instance, are all equal, and in fact parametrized in terms of
the J‖ and J⊥ couplings. As we shall see, these points will be of significance in the final QDS
version, (7). We now turn to a brief discussion of the technicalities of this reformulation.
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2.1. Bosonization

The key element in the famous fermion–boson correspondence [6, 8] is the recognition that,
for an infinite number of fermionic modes of species α, the bilinear combinations

b
†
kα = i

√
2π

Lk

∞∑
p=−∞

: c
†
p+kαcpα:, bkα = − i

√
2π

Lk

∞∑
p=−∞

:c†p−kαcpα:

fulfil the Heisenberg commutation relations for an infinite set of bosonic modes, namely[
bkα, b

†
k′β

] = δkk′δαβ , and [bkα, bk′β] = 0 = [
b
†
kα, b

†
k′β

]
, for k = 2πnk/L, nk = 1, 2, 3, . . ..

Building the appropriate multicomponent local quantum fields in one dimension:

ψα(x) =
√

2π

L

∑
p

e−ipxcpα, ψ †
α(x) =

√
2π

L

∑
p

eipxc†pα,

ϕα(x) = −
∑
k>0

√
2π

Lk

(
e−ikxbkα + eikxb

†
kα

) (4)

yields the identification at the level of operators on Fock space

ψα(x) =
√

2π

L
Fα : e−iϕα(x):, (5)

where the prefactors Fα , the so-called Klein operators, must fulfil certain additional relations
to retain the anti-commutation relations necessary for fermionic operators (see below).

It is evident from (1) and (3) above that the necessity to work with an infinite number of
fermionic modes implies that the single particle dispersion relation is extrapolated indefinitely
above and below the fermi level. As a consequence, the energy spectrum of the model as a
whole is formally unbounded below. In practice this situation is dealt with by introducing
a momentum cutoff, which is adequate for most situations in condensed matter. However,
in the present context it is crucial to maintain the rigorous mathematical fermion–boson
correspondence and isomorphism of Hilbert spaces throughout, and so the regularization of
‘constructive bosonization’ is adopted [8]. This introduces a regularization parameter a → 0
which sets a scale for the suppression of contributions from wavenumbers |p| � a−1 away
from the fermi surface, by modifying (4) above to

ϕα(x) = −
∑
k>0

√
2π

Lk

(
e−ikxbkα + eikxb

†
kα

)
e−ak/2.

An important consequence is that normal ordering in operator products can be re-expressed in
terms of ordinary products in an expansion in powers of a. In particular, (5) becomes

ψα(x) = lim
a→0

(
Fα√

a
e−iϕα(x)

)
. (6)

With these definitions in hand, we can proceed to develop the bosonic counterparts of the
various terms in (3) in order to expose the structure of the three-level QDS equivalent.

It should be noted that (5) and (6) are only valid as operator identities when acting on
the zero fermion number sectors of the respective fermionic Hilbert spaces. The corrected
expressions should have additional charge-dependent phase factors exp(2π ix/L)Nα for charge
Nα in each case, which in turn can be seen as deriving from the equivalent formula entailing
the number operator N̂α ,

N̂α =
∑

p

: c†pαcpα:,

4
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applied to each charge eigenspace. Most of the steps in the bosonization transcription entail
expressions which are bilinear in fermions, and for field quantities evaluated locally at the
magnetic impurity (x = 0), so these phases tend to cancel. However, N̂α-dependent terms do
occur, and their treatment will be taken up in the discussion of the final QDS model below,
and technical remarks relegated to appendix A.2.

The systematics by which the couplings and modes are reorganized can be seen by
inspecting the ‘magnetic’ term:

3∑
α=1

hαSαα ≡ h3S3 + h8S8 + h0S0,
(
HB

(i)

)
entailing a relabeling from diagonally or doubly indexed quantities xαβ, α, β = 1, 2, 3 to
the new set xA, A = 3, 8, 0 (reserving A = 1, 2, 4, 5, 6, 7 for off-diagonal labels), and using
standard Jacobi three-body combinations:

x3 = 1√
2
(x11 − x22), x8 = 1√

6
(x11 + x22 − 2x33), x0 = 1√

3
(x11 + x22 + x33).

The kinetic term is similarly expanded (up to fermion number-dependent terms) as
3∑

p,α=1

h̄vF p:c†pαcpα: =
∑
k>0

h̄vF k
(
b
†
3kb3k + b

†
8kb8k + b

†
0kb0k

)
.

The transverse ‘spin’ interaction terms remain off-diagonal, and are not affected by normal
ordering, leading to4

L

2πa
J⊥

∑
α<β

(
eiζαβ e−i(ϕα(0)−ϕβ(0))F†

βFαSαβ + e−iζαβ ei(ϕα(0)−ϕβ(0))F†
αFβSβα

)
.

By contrast, the longitudinal ‘spin’ couplings (with diagonal fermion bilinears) simply become
combinations of the oscillator modes themselves when the bosonization is implemented, in
the form

J‖
∑

p,p′,α

:c†pαcp′α:Sαα = J‖
∑
k>0

√
kL

2π
e−ka/2i

(
S3

(
b3k − b

†
3k

)
+ S8

(
b8k − b

†
8k

)
+ S0

(
b0k − b

†
0k

))
(
HB

(ii)

)
—again together with additional terms proportional to fermion number.

2.2. Unitary transformation

These contributions are aggregated together with an additional transformation, a conjugation
U · U−1 by the operator

U = exp

(
i
∑

α

ϕα(0)Sαα

)
≡ exp(i(ϕ3(0)S3 + ϕ8(0)S8 + ϕ0(0)S0)).

It is evident from the commutation relations of the U(3) Lie algebra, [Sαα, Sαβ ] = Sαβ ,
[Sββ, Sαβ ] = −Sαβ (with α �= β) that this unitary transformation will cancel the offending
scalar exponentials in the transverse coupling terms, leaving the composite operators

L

2πa
J⊥

∑
α<β

(
eiζαβF†

βFαSαβ + e−iζαβF†
αFβSβα

); (
HB

(iii)

)
4 Note that a common transcription of the standard two-level Kondo/spin-boson equivalence uses Wannier operator
notation, where the coupling constant dimensions are scaled by a factor proportional to the system size (see for
example [6]).

5
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the kinetic terms acquire an additional commutator contribution of the same structure as the
longitudinal coupling terms, which themselves commute with U:

U
∑
k>0

h̄vF k
(
b
†
3kb3k + b

†
8kb8k + b

†
0kb0k

)
U−1 =

∑
k>0

h̄vF k
(
b
†
3kb3k + b

†
8kb8k + b

†
0kb0k

)
− h̄vF

∑
k>0

√
2πk

L
e−ka/2i

(
S3

(
b3k − b

†
3k

)
+ S8

(
b8k − b

†
8k

)
+ S0

(
b0k − b

†
0k

))
.(
HB

(iv)

)
(a further term arising from the double commutator in the conjugation by the exponential
yields a power series in a whose sum can be removed as an additional overall constant). The
outcome of the transcription of the AC–S Hamiltonian (3) is thus the combination of the above
‘magnetic’, longitudinal, transverse and kinetic terms:

U · HACS · U−1 = HB
(i) + HB

(ii) + HB
(iii) + HB

(iv).

The reinterpretation of the right-hand side as a dissipative system Hamiltonian proceeds by
consideration of the composite operators in

(
HB

(iii)

)
which involve the off-diagonal generators

Sαβ , α �= β, of U(3) in combination with Klein operators. It is easily checked using the
algebraic properties [8]

FαF†
α = F†

αFα = 1,
{
F†

α,Fβ

} = {Fα,Fβ} = {
F†

α,F†
β

} = 0, α �= β,

that, provided that the Sαβ are indeed elementary 3 × 3 matrices, the composite operators
defined by S ′

αβ := −F†
βFαSαβ , S ′

αα := F†
αFαSαα = Sαα fulfil the usual U(3) commutation

relations, and can be identified with operators acting between the states of the quantum
three-level system in the QDS interpretation.

The next step is to combine HB
(ii) and HB

(iv), with the recognition that S0 is the linear
Casimir invariant of U(3) (and is certainly proportional to the 3 × 3 identity matrix if the
original operators are represented with elementary matrices). Thus the terms involving b0k
and b

†
0k are entirely quadratic and linear—completing the square for such ‘displaced oscillator’

modes enables their contributions to be combined, up to an (infinite) shift in the energy, into a
sum of kinetic energy terms for an infinite set of oscillator modes which do not interact with
the remainder of the system and can be dropped from the final model. By the same token, the
h0S0 term can be dropped from HB

(i).
In order to emphasize the similarity between the two-level QDS, the spin- 1

2 spin-
boson model (2), and the new system, we adopt the standard 3 × 3 Gell–Mann matrices
λA, A = 1, . . . , 8, as an orthogonal basis for the SU(3) generators in the fundamental
representation, to play the role of the Pauli matrices in (1). Gathering all terms, the form
of the three-level QDS Hamiltonian U · HACS · U−1 → HB

QDS finally becomes

HB
QDS := ε3λ3 + ε8λ8 + �(λ1 + λ4 + cos ζλ6 + sin ζλ7) +

∑
k

h̄ωk

(
b
†
k3bk3 + b

†
k8bk8

)
+

∑
k

h̄C3kλ3
(
bk3 + b

†
k3

)
+ h̄C8kλ8

(
bk8 + b

†
k8

)
. (7)

The QDS parameters have the following definitions in terms of those of the original AC–S
model. From above, the detuning parameters ε3 and ε8 are simply h3 and h8 respectively, and
from the kinetic terms the oscillator baths have the frequency spectrum ωk = vF k provided
ω � ωc, where ωc is the cutoff frequency ωc = vF /a. The tunnelling matrix elements are
given in terms of the transverse coupling strength of the original model, � ≡ −J⊥L/2πa,
modulated by a complex phase. By an appropriate basis choice, this phase may be shifted on

6
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to the 2, 3 sector, and expressed in the orthogonal basis by a combination of the corresponding
Gell–Mann matrices, namely λ6 and λ7, rotated by angle ζ := ζ23 − ζ13 + ζ12 (see (3) and also
(10), (12) below).

The dissipative terms have been rewritten in the conventional coordinate-coupled form
∼=(b + b†) rather than the imaginary (momentum) combinations i(b − b†) appearing in the
above derivation by means of a canonical transformation b† → −ib†, b → ib. Evidently, the
overall dissipative couplings are a combination of contributions from different terms, although
both coefficients C3k and C8k are equal:

C3k = C8k ≡ Ck = −vF

√
2πk

L
e−ωk/2ωc

(
1 − J‖L

2πh̄vF

)
. (8)

The spectral frequency J (ω) follows directly from the definition (in the limit a → 0). As
shown explicitly in appendix A.3, this has the ohmic form

J (ω) = αω e−ω/ωc , where α :=
(

1 − J‖L
2πh̄vF

)2

. (9)

The additional parameters emerging from the details of the way the AC–S model and its
bosonization are implemented are thus the cutoff frequency ωc and the dimensionless ohmic
coupling α (not to be confused with the spin-label α).

As mentioned above, the fermion-number dependence of the bosonization transcription
still requires explanation. Indeed, the introduction of the Klein factor-dependent operators
S ′

αβ as effective U(3) generators implies that the three states of the quantum system in fact
lie across different charge sectors. This situation, and at the same time the treatment of the
residual fermion-number-dependent terms, is resolved by noting that the original model (3)
has three conserved quantum numbers N̂α + Sαα , α = 1, 2, 3, or N̂3 + S3, N̂8 + S8, and N̂0 + S0
in terms of relative degrees of freedom. Of course S0 is proportional to the identity matrix,
and so a projection onto an eigenspace with fixed eigenvalue M0 is tantamount to fixing the
total fermion number at say N0 which is certainly a conserved quantity. The system further
admits a projection onto fixed eigenspaces of the remaining two operators with eigenvalues M3

and M8, say. As shown in appendix A.2, these projections leave the form of (7) unchanged.
However, the detuning parameters ε3, ε8 need to be shifted from their original values h3, h8

to absorb additional M3- and M8-dependent contributions.

2.3. Exact solvability and extensions of the model

The equivalence of models (3) and (7) establishes that the three component fermi gas model
does indeed have a dissipative system counterpart. The utility of this observation of course
derives from also showing that the starting model belongs to the exactly solvable class.
The standard coordinate analysis, or an equivalent algebraic formulation in the context of the
associated spin chain, requires that the model admit an R-matrix with the appropriate properties.
In the present case, following [12], we require that the single particle-impurity scattering matrix
S, expressible as the exponential of the interaction component of the Hamiltonian Hint(J‖, J⊥),
can be reparametrized in terms of the R-matrix R(xα=1, q) for some arbitrary but fixed value
of the (additive) spectral parameter, say α = 1. Thus we demand

S = eiHint(J‖,J⊥) ≡ R(xα=1, q)

in such a way that the parameters x, q become functions of the couplings J‖, J⊥. We proceed
by an explicit evaluation of S. From (3) we have, using elementary 3 × 3 matrices eαβ ,

Hint = J‖
∑

α

eαα ⊗ eαα + J⊥
∑
α<β

(eiζαβ eαβ ⊗ eβα + e−iζαβ eβα ⊗ eαβ),

7
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so

S = eiJ‖
∑

α

eαα ⊗ eαα + cos J⊥
∑
α �=β

eαα ⊗ eββ

+ i sin J⊥
∑
α<β

(eiζαβ eαβ ⊗ eβα + e−iζαβ eβα ⊗ eαβ). (10)

This must be compared with the known forms [13, 14] (see also [15]) for standard trigonometric
R-matrices of the appropriate dimension:

R(x, q) = (qx − q−1x−1)
∑

α

eαα ⊗ eαα + (x − x−1)
∑
α �=β

eαα ⊗ eββ

+ (q − q−1)
∑
α<β

(xeαβ ⊗ eβα + x−1eβα ⊗ eαβ). (11)

This expression clearly has the correct structure to be identified with the scattering matrix
S if ζ12 = ζ13 = ζ23 with phase factors identified with x. Adopting logarithmic parameters
x = eif , q = eμ, thus with ζ ≡ f , the R-matrix is up to a factor of 2:

R(x, q) = sinh(if + μ)
∑

α

eαα ⊗ eαα + i sin(f )
∑
α �=β

eαα ⊗ eββ

+ sinh(μ)
∑
α<β

(eif eαβ ⊗ eβα + e−if eβα ⊗ eαβ). (12)

Comparing the ratios of coefficients in expressions (12) and (10) leads directly to the
reparametrization of f , μ in terms of J‖, J⊥:

cosh μ = cos J‖
cos J⊥

, cot2 f = sin2 J‖
sin(J⊥ + J‖) sin(J⊥ − J‖)

. (13)

With the three-level model admitting a reparametrization showing equivalence to the exactly
solvable trigonometric R-matrix, it is clear that the proposed model belongs to this rare and
important class of exactly solvable dissipative systems.

3. Discussion

In conclusion, this report has followed the constructive bosonization approach to propose a new
exactly solvable three-level quantum dissipative system. Although the background formalism
is well known, we have presented concrete details and careful explanations in order to expose
the technicalities of the required manipulations, and we anticipate that the methods of this
paper may be deployed to find other exactly solvable quantum dissipative system models. In
the present case it can be expected that further study will yield insights into the physics of
this system as an instance of a QDS model, to be compared and contrasted with the already
well-studied mapping of the AKM to the spin- 1

2 spin-boson model.
As a generalization of the two-level spin-boson/Kondo model correspondence, the three-

level analogue presented in this work belongs to the same family of related problems and
models. In particular it is interesting to note the relationship between the present model and
the triangular lattices and quantum Brownian motion discussed in [16]. It appears that the
transverse field terms in (7) are equivalent to hops on this triangular lattice. The model in
[16] is shown to correspond to the two-dimensional 3-state Potts model with a boundary, with
critical behaviour derivable through c = 2 boundary conformal field theory, and it would
be instructive to formalize the correspondence to the present three-level dissipative system.
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Furthermore, it has been pointed out that the present model bears connections to quantum
wire junctions, the dissipative Hofstadter model and open string theory as presented in [17].
The current model contains further generalizations to these systems by including marginal
operators coupled to the diagonal elements of the SU(3) algebra.

Further examples of three-level system-environment models to which our new exactly
solvable three-level QDS might be applied include three-level quantum dots, single qubit
systems addressed by an extra ancillary state, or qutrit states, triatomic triple well potentials,
such as ammonia (NH3) and methyl (−CH3), as well as Bose–Einstein condensate atomic
transistors [18], which have a three well structure. To further develop the model one should
resolve the full spectrum and eigenstates of the Hamiltonian via the Bethe Ansatz [19],
allowing for calculation of dynamical and thermodynamical quantities of interest. One may
also be interested in investigating the vacuum sector dependence [8] and finite size effects [20]
in the bosonization. The study of entanglement between quantum systems and dissipative
environments [21, 22] may also be examined within this impurity-bath system. Generically,
it is clear that our analysis of the details of the constructive bosonization and unitary mapping
technique suggests that, in the light of potential new applications to QDS, the well-known
connections between fermion gas-impurity models and spin chains warrant re-examination.
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Appendix

A.1. Notation

Gell–Mann matrices and the standard form of the Lie algebras of SU(3) and U(3) are based
on the (multiplicative) algebra of elementary 3 × 3 matrices, namely eαβeγ δ = δβγ eαδ . Thus
the commutation relations are

[Sαβ, Sγ δ] = δβγ Sαδ − δαδSγβ.

Introducing the orthogonal basis of trace-normalized λ-matrices via 1
2 Tr(λAλB) = δAB,

A, B = 1, 2, . . . , 8, any 3 × 3 traceless matrix x can then be expressed in terms of orthogonal
coordinates xA via

xαβ = 1

2

8∑
A=1

xA(λA)αβ, xA = 1

2
Tr(xλA),

including of course the elementary matrices themselves. Quantities may also be manipulated
using the completeness relation

δαβδγ δ = 1

3
δγβδαδ +

1

2

8∑
A=1

(λA)γβ(λA)αδ,

where the right-hand side may be written uniformly over an extended set of λ-matrices λA,

A = 0, 1, 2, . . . , 8, by introducing λ0 =
√

2
3 13×3 to stand in for the identity matrix.

Finally in interpreting one-particle operators in second-quantized form, consider the three
states |α〉 := c†α|0〉 associated with a fixed creation mode (where

{
c†α, cβ

} = δαβ as usual).

9



J. Phys. A: Math. Theor. 43 (2010) 255305 S H Jacobsen and P D Jarvis

Then it is easy to check that

〈γ |c†αcβ |δ〉 = δδαδβγ ≡ (eαβ)δγ , (A.1)

—that is, that the c†αcβ play the role of elementary matrices on such labelled states. Thus for
a term in the particle-impurity interaction such as λA ⊗ λA we have from above and dropping
the ⊗,

λA ⊗ λA →
∑
α,β

1

2
Tr(λAeαβ)c†αcβ · λA ≡ 1

2

∑
αβ

c†α(λA)αβcβ · λA. (A.2)

A.2. Charge sector projection

It was pointed out in the text that the bosonization transcription was carried out to the neglect
of various terms accumulating fermion-number (charge) dependent factors. For example the
longitudinal couplings certainly amount to a sum over not only the bosonic modes, which is
of course one source of the dissipative coupling, but also contain an explicit number operator
term. Similarly the standard expression for the bilinear fermion kinetic energy term (involving
as it does a derivative of the fermion field, albeit evaluated at zero) is known to contain a term
quadratic in the respective charge operators (in fact the coefficients can also differ for different
fermionic boundary conditions, but we do not need this option for our basic derivation). Overall
we assume that the residual fermion number terms amount to an additional contribution from
these sources of

C
∑

α

N̂2
α +

∑
α

CαN̂α ≡ C
(
N̂2

3 + N̂2
8

)
+ (C3N̂3 + C8N̂8) +

(
CN̂2

0 + C0N̂0

)
.

As mentioned already, total fermion charge is conserved, so for N̂0 taken fixed at eigenvalue
N0 say, the last term is an additive constant. For the remaining terms we turn to the relative
conserved quantities N̂3 + S3, N̂8 + S8 and to the projections onto fixed eigenspaces with
eigenvalues M3, M8, respectively. Introduce weight labels |m, y〉 for the basis of the three-
dimensional representation of SU(3) corresponding to the impurity system states, where m,
y are the eigenvalues of λ3, λ8 (so that 1

2m, 1
2y are the correctly normalized eigenvalues

of 1
2λ3 = S3 and 1

2λ8 = S8, or isospin and hypercharge, respectively). Imposing the
projections, we see that for the total states |m, y;ψ〉, the fermionic part |ψ〉 must have
charges N3 = M3 − 1

2m, N8 = M8 − 1
2y and the charge dependent piece on these states

becomes

C
(
M2

3 + M2
8

)
+ 1

4 (m2 + y2) + (C3M3 + C8M8) − (
CM3 + 1

2C3
)
m − (

CM8 + 1
2C8

)
y. (A.3)

Finally note that the weight basis of the three-dimensional fundamental representation is
| ± 1, 1/

√
3〉 and |0,−2/

√
3〉, so that by construction (m2 + y2) ≡ 4

3 for all states. Thus the
first line of the transcription is a further additive constant, while the second line amounts to an
external ‘magnetic’ coupling and hence an adjustment to the detuning parameters ε3, ε8, by a
shift of −(

CM3 + 1
2C3

)
, −(

CM8 + 1
2C8

)
, respectively.

A.3. Derivation of ohmic coupling

Given the spectrum of bath frequencies vF k = ωk ≡ ωnk
= 2πvF /L · nk , from the definition

of the spectral frequency J (ω) we have for any test function f (ω), from (8),∫
J (ω)f (ω) dω =

∑
nk

C2
k f (ωk) = 2πvF /L

∑
nk

αωnk
e−ωnk

/ωcf (ωnk
)

→ 2πvF /L

∫
dnk αωnk

e−ωnk
/ωcf (ωnk

) ≡
∫

dω(αω e−ω/ωc )f (ω), (A.4)

10
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where the approximation that f (ω) is supported in the region ω � ωc has been made. The
inferred forms of J (ω) and α are as given in (9) above.
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